Recenzja rozprawy doktorskiej mgr inż. Katarzyny Gieldy-Pinas
„Modelowanie relacji człowieka-środowisko w krajobrazie pojeziernym na przykładzie Pojezierza Gnieźnieńskiego”

Oceny rozprawy doktorskiej dokonano na podstawie uchwały Rady Wydziału Nauk Geograficznych i Geologicznych Uniwersytetu im. Adama Mickiewicza w Poznaniu z dnia 16.03.2016 roku.

Przedstawiona do oceny rozprawa doktorska mgr inż. Katarzyny Gieldy-Pinas, doktorantki Instytutu Geocenologii i Geoinformacji WNGiG UAM (pod kierunkiem prof. UAM, dr hab. Zbigniewa Zwolińskiego) stanowi spójny tematycznie zbiór pięciu autorskich i współautorskich artykułów, opublikowanych w czasopismach naukowych w latach 2012-2015, poprzedzonych autoreferatem stanowiącym syntezę głównych wątków badawczych. Problematyka rozprawy dotyczy oceny krajobrazu i predykcji możliwych zmian użytkowania ziemi i pokrycia terenu oraz ich skutków, w wyniku uwarunkowanych środowiskowo interakcji przestrzennych, zachodzących na badanym obszarze, a wywołanych indywidualnymi decyzjami rolników podejmujących suwerenne decyzje gospodarcze, w kontekście prowadzonej przez władze lokalne polityki zrównoważonego rozwoju. Tematyka rozprawy mieści się w ramach geografii. Do badań zastosowano nowoczesne instrumentarium narzędzi systemów informacji geograficznej w powiązaniu z modelowaniem agentowym (ABM), wykorzystywanym szeroko w różnych dziedzinach, w tym często do modelowania zjawisk emergentnych w badaniu interakcji pomiędzy działalnością człowieka a funkcjonowaniem środowiska przyrodniczego. Ogólny tytuł rozprawy, uszczegółowiony we wprowadzeniu do autoreferatu, odpowiada treści zawartej w cyklu artykułów składających się na całą pracę.

Do rozprawy załączono: formularz ankiety wykorzystywanej w badaniach i kod źródłowy aplikacji Agent Analyst ArcGIS (w języku programowania Python) decyzyjnego modelu agentowego, wykorzystywanego w toku badań. Do rozprawy dołączono także szczegółowy opis wkładu własnego Autorki w przygotowanie monotematycznego cyklu artykułów, podpisane oświadczenia współautorów potwierdzające ich wkład własny pracy oraz streszczenie rozprawy w języku angielskim. Taka konstrukcja rozprawy doktorskiej jest zgodna z wymogami formalnymi.
zawartymi w art. 13 pkt.2 ustawy z dn. 14 marca 2003 roku o stopniach naukowych i tytule naukowym oraz o stopniach i tytule w zakresie sztuki. Obowiązkiem recenzenta, przed właściwą oceną merytoryczną, jest także analiza formalna wkładu własnego pracy Doktorantki w ramach tak przygotowanej rozprawy doktorskjej.

Monotematyczny cykl zawiera: autoreferat, trzy artykuły w języku polskim oraz dwa w języku angielskim (nie licząc streszczenia w j. angielskim), w kolejności chronologicznej publikacji od 2012 do 2015 roku. Układają one się tematycznie w logiczną całość prezentując kolejno: charakterystykę obszaru i przedmiotu badań (cel diagnostyczny wskazany w autoreferacie), specyfikację narzędzi i metodologii badań, w tym modelowania agentowego (cel metodologiczny), oraz właściwy cel rozprawy, określony jako „symulacje zmian krajobrazu i ich potencjalne skutki dla wybranych jezior” (cel prognostyczny).

Syntezę wątków badawczych Doktorantka zawarła w autoreferacie (22 str.), formułując problem badawczy, główną hipotezę pracy, cele badawcze, przedstawiając obszar i zakres badań oraz dokonując operacjonalizacji (wyszczególniając etapy badań).


Efektywny, ogólny, ważony wkład pracy Doktorantki wyniósł 77% (w stosunku do objętości tekstów; 71% licząc punktację – bez autoreferatu), natomiast w całym cyklu artykułów, na każdym z wymienionych etapów badawczych: diagnostycznym, symulacyjnym i prognostycznym, mgr inż. Katarzyna Giełka-Pinas odgrywała aktywną, wiodącą rolę, samodzielnie formułując cele i hipotezy badawcze, konstruując zasady metodologiczne modelu agentowego oraz przeprowadzając właściwe badania empiryczne i symulacyjne. Do Doktorantki także należała końcowa wizualizacja i interpretacja uzyskanych wyników modelu symulacyjnego.

Ocena zasadniczej tezy pracy i jej oryginalności

Autorka podjęła się analizy zmian w krajobrazie pojeziernym traktując jako uniwersalny wskaźnik zmian środowiskowych struktur typów pokrycia terenów i użytkowania ziemi (LU/LC) i poszukując równocześnie potencjalnych konsekwencji tych zmian zarówno w samym układzie przestrzennym krajobrazu, jak i w funkcjonowaniu geoekosystemów jeziornych. Główna hipoteza robocza badań zakładała, że suwerenne, indywidualne decyzje rolników gospodarujących na wybranym do badań rolniczym obszarze Pojezierza Gnieźnieńskiego, wynikające z akceptacji prowadzonej przez władze lokalne polityki zrównoważonego rozwoju, której narzędziem ekonomicznym jest Program Rolnośrodowiskowy (PRś, wspomagany z funduszy UE), skutkują, korzystnymi dla środowiska przyrodniczego, ukierunkowanymi zmianami w użytkowaniu ziemi i pokryciu terenu, które „mają pozytywny wpływ na poprawę jakości wód jeziornych poprzez zmniejszenie ładunków azotu i fosforu dostarczanych z obszaru zlewni”. Sumaryczna analiza ładunków biogenów azotu i fosforu pochodzenia antropogenicznego, głównie jako efektu prowadzonej gospodarki rolnej, przyczyniającej się do nadmiernej eutrofizacji i toksycznych zakwitów sinic w zbiornikach wodnych, w tego typu badaniach zwykle prowadzona jest retrospektywnie, na podstawie wieloletnich serii pomiarów i równolegle do obserwowanych zmian LU/LC.

W pracy Autorka zdecydowała się na odmienne podejście. Skonstruowała model predykcjny zmian użytkowania ziemi i pokrycia terenu wybranych fragmentów Pojezierza Gnieźnieńskiego, skorelowany z PRś. Na tej podstawie, wykorzystując udokumentowane dane w literaturze naukowej dla badanego obszaru oraz określając w trakcie badań terenowych stan troficzny jezior badanego obszaru (TSI, w latach 2012-2013), oszacowała wielkości roczne średniego natężenia dostaw materii organicznej dla jezior i przypadających na 1 ha określonych typów rolniczego użytkowania ziemi, a następnie zanalizowała (a priori) zmienność czasowo-przestrzenną ładunków biogenów w zlewniach wybranych jezior, weryfikując pozytywnie główną hipotezę rozprawy.
Tak sformułowane pytania badawcze i hipotezy dotyczące struktury użytkowania ziemi i pokrycia terenu (LU/LC) i estymacji ładunku biogenów fosforu i azotu, w kontekście PRs, pozwalają na naukowe spojrzenie na predykcję dynamiczki obserwowanych zjawisk i mają dodatkowy walor aplikacyjny co w pełni kwalifikuje temat rozprawy jako oryginalny problem naukowy.

Kluczowy dla tak przeprowadzonego badania jest odpowiedni dobór metod i narzędzi symulacji zmian użytkowania ziemi i pokrycia terenu, wybór parametrów początkowych modelu, warunków brzegowych (zewnętrznych i wewnętrznych - ograniczających), przestrzennej jednostki odniesienia (MAUP, modifiable areal unit problem) oraz analiza i walidacja różnych scenariuszy symulacji w celu poprawnej interpretacji uzyskanych wyników. Jako narzędzie badania Doktorantka wybrała aplikację Agent Analyst ArcGIS, do którego zaimplementowano narzędzie Repast modelu agentowego (ABM), w celu predykcji decyzji przestrzennych rozpatrywanych podmiotów w różnych scenariuszach symulacyjnych. W kontekście aplikacji GIS agencji (decyzyjnych i pomocniczych) definiowani byli na osobnych warstwach (layers) i reprezentowali: rolników oraz działki rolne. W modelu agentowym (autonomicznym) warunki początkowe reprezentowała warstwa (mapa) użytkowania ziemi i pokrycia terenu (LULC). W dalszych scenariuszach rozpatrywano dodatkowo agentów decyzyjnych: władze lokalne i leśników, jako podmioty dysponujące suwerennymi decyzjami wpływającymi na zmiany użytkowania ziemi i pokrycia terenów (zaimplementowane w środowisku Netlogo).

Ocena merytoryczna rozprawy
Logika badań zawartych w spójnym cyklu monotematycznych artykułów oparta jest z jednej strony na wspólnym przedmiocie i obszarze badań, a z drugiej na ujęciu wieloetapowego toku badań w postaci jednolitej bazy danych przestrzennych wykorzystywanych w toku geomodelowania w systemie geoinformacyjnym. Przegląd literatury przedmiotu (61 publikacji w autoreferacie, a ogółem 161 w całym cyklu) jest dogłębnym i wyczerpującym, uwzględniając najważniejsze publikacje związane z celem pracy i przy tym przeprowadzona dyskusja ma na celu dobór narzędzi: pojęć i metod, które względnie obiektywnie pozwolą zrealizować poprawnie symulacje zmian użytkowania ziemi i pokrycia terenu. Niektórzy autorzy (Marceau, Berenson, 2011:3) określają ten tok postępowania mianem geosymulacji (geosimulation), które obejmuje wykorzystanie obiektyw o zorientowanych modeli przestrzennych w celu zrozumienia przez symulację – dynamiczki złożonych, adaptacyjnych systemów człowiek-środowisko (complex, adaptive human-driven geographic systems). W każdym z przeglądowych i oryginalnych artykułów naukowych, składających się na rozprawę, formułowano jednak osobno cele i hipotezy (które poddawane

były niezależnie procedurze recenzji do publikacji). Dla celów diagnostycznych poddano cały badany obszar ocenie stopnia antropopresji metodą bonitacji punktowej (w autorskim artykule z 2012 roku). Założenia metodologiczne sprecyzowano i dobór narzędzi przedstawiono we (współautorskim) artykule dot. modelowania agentowego (w 2013 roku). Natomiast właściwy rdzeń rozprawy stanowią ostatnie trzy publikacje (z 2015 roku).


Bazując na trzech przewidywanych scenariuszach zmian użytkowania ziemi i pokrycia terenu, nazwanych: pozytywny, neutralny i negatywny, oszacowano roczny wpływ ładunków biogenuń do wybranych jezior położonych na w granicach obszarów ich zlewni. Symulowaną zmienność była wielkość udziału liczebności przystępujących do PRŚ rolników (odpowiednio: 10%, 1% i 0.1%).

---

Przewidywano negatywną korelację między ich liczbą a wielkością rocznego spływu ładunków biogenów. Wynika to z założenia, że rolnicy przystępujący do PRś decydują się na przekształcenie terenów rolnych, zależając j (także jako strefy buforowe wzdłuż cieków) lub przekształcając tymczasowo na odlugi co skutkuje mniejszym ładunkiem obserwowanych biogenów.

Właściwa symulacja rozgrywa się przy wykorzystaniu modelu rastrowego warstw CLC (dla pół o rozdzielczości przestrzennej 30 x 30 m) wykorzystując automat komórkowy (CA) reprezentujący interakcję agenta, jego otoczenie i warstwy informacyjne. Analizując kod źródłowy aplikacji można zauważyć, że do procedury symulacji wykorzystano rozkład jednostajny dyskretny losowania działek rolnych /rolników/, które następnie poddawane są ocenie, czy spełniają kryteria PRś. Następnie, zależnie od drzewa decyzyjnego wprowadzonego do modelu odpowiednio zmieniana jest przewidywana charakterystyka (klasa) użytkowania ziemi biorąc pod uwagę ich sąsiedztwo i warunki PRś. Schemat decyzyjny modelu został opracowany na podstawie pilotażowych badań ankietowych, wskazujących, że najważniejsze dla rolników, przy podejmowaniu decyzji rolnosrodowiskowych, są aspekty finansowe i kwestie ochrony środowiska, a mniej ważne – opinie doświadczenia osób z otoczenia (rodziny, sąsiadów). W tym kontekście wybór dyskretnego rozkładu jednostajnego jest pewnym uproszczeniem, abstrahowaniem od niektórych czynników zdiagnozowanych w badaniach pilotażowych. Zakłada, że prawdopodobieństwo przystąpienia do PRś jest takie same dla każdego rolnika. Ciekawe byłoby tutaj poróźnienie wyników symulacji przy zastosowaniu innego rozkładu statystycznego opisującego prawdopodobieństwo decyzji o przystąpieniu do PRś.

Osobnego omówienia wymaga ostatni z prezentowanych w monotematycznym cyklu artykuł. W badaniu wprowadza on do modelu nowe czynniki. Oprócz wcześniej rozpatrywanych (rolników), bierze się pod uwagę nowych aktorów (agentów), którym przypisuje się pewne role w procesie planowania przestrzennego. Sa nimi lokalne władze samorządowe oraz leśnicy (a faktycznie, władze leśnictw i nadleśnictw), odpowiedzialne za transformacje struktury użytkowania ziemi i pokrycia terenu (odpowiednio dotyczących całości obszaru oraz terenów leśnych). W symulacji analizuje się dwie sytuacje określone mianem strategii. W pierwszej strategii decyzję o zmianie użytkowania ziemi (pokrycia terenu, LU/LC) podejmuje tylko rolnik, w drugiej – na decyzję wpływ mają wszyscy aktorzy lub tylko wybrani (władze lokalne). Jako schemat decyzyjny rozpatrywany jest analogicznie PRś wg wspomnianych wyżej scenariuszy (pozytywnego, neutralnego i negatywnego). Ale w strategii drugiej, z udziałem agentów: rolników, władzy i leśników, rozpatrywane są warianty, w których możliwe są wszystkie transformacje LU/LC. Rozpatruje się scenariusze, w których główne decyzje podejmują poszczególni aktorzy.
kierując się tylko racjonalnymi względami środowiskowymi, tylko racjonalnymi względami ekonomicznymi albo waząc równocześnie względy środowiskowe i ekonomiczne. Operacjonalizacja mechanizmu współpracy w ramach tak nakreślonych scenariuszy polega na rozpatrzeniu variantów równowagi siły decyzyjnej aktorów (niezależności decyzji), kooperacji i konkurencji (konfrontacji) decyzji dotyczących zmian ŁU/LC (określony nazwą tzw. decision market). W ten sposób każdą możliwą sytuację można opisać w kategoriach trzech agentów (aktorów), z których każdy może prezentować jedną z trzech wymienionych postaw wobec środowiska, wchodząc w jedną z trzech możliwych interakcji z pozostałymi uczestnikami procesu podejmowania decyzji. Liczba wszystkich możliwych variantów, w których decyzje podejmuje trzech agentów (aktorów) wynosi 1680 scenariuszy, dwóch z trzech – 5040 i jeden – 27. W rozprawie rozpatrywano tylko 3 wybrane sytuacje; kolejno: zrównoważonych środowiskowo decyzji tylko władz lokalnych, kooperacji wszystkich trzech aktorów i ich konkurencji. Symulacje zmian użytkowania ziemi (i pokrycia terenu ŁU/LC) oraz weryfikacji hipotez dokonano dla zlewni jezior Chrzypsko Wielkie i Görzuchowskiego, analizując także zmiany w granicach gmin do których te jeziora należą. Dodatkowo oszacowano także wybrane metryki krajobrazowe.

Dyskusja i uwagi polemiczne

W toku oceny prezentowanej rozprawy traktowano całościowo cykl monotonematyczny artykułów, natomiast autor tej opinii miał okazję zetknąć się już z tą problematyką jako anonimowy recenzent jednego z artykułów. W tym kontekście należy wyraźnie stwierdzić, że zarówno cel rozprawy, jak i cele i formułowane hipotezy w poszczególnych artykułach są spójne.

Skonstruowany model i przeprowadzone symulacje zmian użytkowania ziemi i pokrycia terenu dotyczą jednak niewielkiego fragmentu Pojezierza Gnieźnieńskiego. Nie ulega wątpliwości dla recenzenta, że na tym obszarze zidentyfikowano i wysymulowane relacje pomiędzy działalnością rolniczą człowieka i warunkami środowiska przyrodniczego zostały odwzorowane prawdziwą i można przyjąć, że podobnie będą się kształtować na terenie większości obszarów krajobrazu pojeziernego. Powstaje jednak pytanie o granice pewności symulowanych wyników i oddziaływanie czynników losowych. W pewnej mierze jest to właściwie pytanie do autorów algorytmów zaszytych w czarnej skrzynce aplikacji Repast (Agent Analyst ArcGIS). Przy konstrukcji modelu, Doktorantka (m.in. w autoreferacie) przeprowadziła dyskusję dotyczącą ograniczeń modeli agentowych i wymuszonego, uproszczonego sposobu opisu rzeczywistości. Natomiast jednym z sposobów oceny wysymulowanych sytuacji rzeczywistych jest oczywiście weryfikacja rezultatów i parametrów obserwowanych zjawisk (w tym przypadku ładunków obserwowanych biogenów) dla poszczególnych scenariuszy i przyjęcie tych, które są najbardziej

3 W przypadku zespołowego podejmowania decyzji jest to liczba nierównoważnych permutacji z powtórzeniami, w przypadku jednego aktora jest liczba wariancji z powtórzeniami.
wiarygodne. Oznacza to wykorzystanie „brutalnej siły” (brute force) techniki komputerowej i przegląd dużej liczby możliwości do wyobrażenia sobie sytuacji w świecie rzeczywistym (przyjmując oczywiście założenia początkowe modelu). Można tutaj doszukiwać się analogii do słynnego meczu szachowego komputera IBM Deep Blue kontra Garii Kasparow w 1997 roku wygranego w końcu przez komputer. W rozprawie symulacje obejmują tylko wybrane, niewielkie fragmenty pojeziera. W tym kontekście należy poddać jednak w wątpliwość wyrażoną w ostatnim artykule opinię dotyczącą wystarczającej mocy zasobów i wydajności komputera PC (a nawet stacji roboczej) do podobnych symulacji na dużo większych obszarach biorąc nawet pod uwagę tak ograniczoną liczbę scenariuszy jaką przedstawiono wyżej (w tym tekście).

Drugim istotnym czynnikiem decydującym o jakości symulacji i uzyskanych rezultatów są warunki początkowe. Ich drobna zmiana na początku symulacji może prowadzić do niespodziewanie odmiennych wyników. Ten aspekt został jednak arbitralnie ustalony w momencie podjęcia decyzji o wykorzystaniu map użytkowania ziemi CLC z 2006 roku. Zakres czasowy symulacji automatów komórkowych w rozprawie został określony na 5 lat (przy kroku czasowym równym jeden rok w kolejnych cyklech) To za krótki okres aby wnioskować o przestrzennej tendencji obserwowanych zjawisk i pokusić się o stwierdzenie jaki jest finalny stan układu przestrzennego symulacji LU/LC, nawiązując do klasyfikacji automatów komórkowych (Wolfram, 2002:231)⁴. Raczej nie będzie to ewolucja do stanu homogenicznego – pokrycia lasami i odłogami większości badanego obszaru (klasa 1, prowadząca do jednego stanu końcowego niezależnie od warunków początkowych). Bardziej prawdopodobne jest utrwalenie pewnego stanu stabilnego, ewentualnie wykazującego pewną okresową powtarzalność (klasa 2). Jednak przy tak krótkim horyzoncie czasowym trudno to ocenić. Równie prawdopodobne jest wytworzenie pewnego nieuporządkowanego globalnie i lokalnie losowego układu przestrzennego (klasa 3) lub (tak jak w klasie 4) pewnego przejściowego stanu, który cechuje się lokalnym uporządkowaniem struktur przestrzennych, oddziałującym globalnie na dalszą ewolucję układu przestrzennego LU/LC. Autorka nawiązuje krótko do tego problemu na początku rozprawy we wnioskach w autoreferacie, pisząc o możliwości zastosowania skonstruowanego modelu w różnych skalach przestrzennych i wrażliwości na zmianę parametrów początkowych, związanych z decyzjami jaki podejmują agenci.

Uwagi końcowe

Przedstawiona rozprawa doktorską jest interesująca i napisana bogatym językiem. Stanowi oryginalne, twórcze osiągnięcie naukowe, szczególnie w części eksperymentalnej, którą ponadto cechuje walor uniwersalizmu. Autorka dostrzega i zmierzyła się z problemem, który stanowi na pewno wyzwanie dla geografii wykorzystującej narzędzia systemów geoinformacyjnych.

Osiągnęła założone cele i uzyskała potwierdzenie sformułowanych hipotez. Prezentowana rozprawa stanowi znaczącą pozycję w dalszych badaniach nad zagadnieniem geomodelowania relacji człowiek-środowisko. Doktorantka wykazała się dobrym opanowaniem warsztatu badawczego: umiejętnością stawiania problemów naukowych, znajomością literatury przedmiotu, umiejętnością poprawnego wnioskowania. Rozprawa cechuje się logiczną kolejnością poszczególnych etapów pracy badawczej, a podejmowane wątki są rzeczywiście istotne dla sformułowanego celu, abstrahując od mniej ważnych szczegółów.

Stwierdzam, że przedstawiona do recenzji rozprawa doktorska mgr inż. Katarzyny Giełdy-Pinas spełnia wymagania Ustawy z dn. 14 marca 2003r. o stopniach naukowych i tytule naukowym oraz o stopniach i tytule w zakresie sztuki (Dz.U. nr 65 z dn. 16 kwietnia 2003r.) i wnioskuję o przyjęcie pracy i dopuszczenie do dalszych etapów przewodu doktorskiego.